On the Separation Performance of the Strong Uncorrelating Transformation When Applied to Generalized Covariance and Pseudo-covariance Matrices
نویسنده
چکیده
Traditionally, the strong uncorrelating transformation (SUT) is applied to the zero-lag sample autocovariance and pseudoautocovariance matrices of the observed mixtures for separating complexvalued stationary sources. The performance of the SUT in that context has been recently analyzed. In this work we extend the analysis to the case where the SUT is applied to “generalized” covariance and pseudocovariance matrices which are prescribed by an arbitrary symmetric, positive definite matrix, termed an “association matrix”. The analysis applies not only to stationary sources, but also to sources with arbitrary complex-valued temporal covariance and pseudo-covariance. As we show, the use of generalized covariance and pseudo-covariance matrices for the SUT entails a potential for significant improvement in the resulting separation performance, as we also demonstrate in simulation.
منابع مشابه
Complex ICA using generalized uncorrelating transform
An extension of the whitening transformation for complex random vectors, called the generalized uncorrelating transformation (GUT), is introduced. GUT is a generalization of the strong-uncorrelating transform [J. Eriksson, V. Koivunen, Complex-valued ICA using 2nd-order statistics, in: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing (MLSP’04), Sao Luis, Brazil, 2004] ...
متن کاملDiagonalisation of covariance matrices in quaternion widely linear signal processing
Recent developments in quaternion-valued widely linear processing have established that the exploitation of complete second-order statistics requires consideration of both the standard covariance and the three complementary covariance matrices. Although such matrices have a tremendous amount of structure and their decomposition is a powerful tool in a variety of applications, the noncommutative...
متن کاملStructure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملJoint mean and covariance estimation with unreplicated matrix - variate data ∗
It has been proposed that complex populations, such as those that arise in genomics studies, may exhibit dependencies among observations as well as among variables. This gives rise to the challenging problem of analyzing unreplicated high-dimensional data with unknown mean and dependence structures. Matrixvariate approaches that impose various forms of (inverse) covariance sparsity allow flexib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012